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Abstract 

The resolution function of a three-axis, X-ray 
spectrometer is considered for the case when the 
monochromator and analyser crystals are ideally 
perfect. It is shown that, for X-ray sources which 
produce either an ill-collimated monochromatic beam 
(conventional source) or a well-collimated white beam 
(synchrotron radiation), the resolution problem may be 
simplified. This simplification allows the profile of an 
arbitrary section of the resolution function to be 
expressed as a one-dimensional integral of the product 
of three functions; one to represent the source 
characteristics and the other two to describe the 
Darwin profiles of the monochromator and analyser 
crystals. The formalism is extended to describe the 
measurement of the resolution function by a perfect 
crystal mounted on the sample table of the spectrom- 
eter. Comparison of the a priori calculations with 
measurements made on a spectrometer at a con- 
ventional source yields very good agreement. 

Introduction 

Recently intense X-ray sources such as high-brilliance 
rotating-anode generators and synchrotron radiation 
sources have enabled high-resolution diffraction experi- 
ments to explore new areas in science. In con- 
densed-matter physics, for example, particular interest 
has been focused on phase transitions in low- 
dimensional systems such as smectic liquid crystals 
(see, for example, Als-Nielsen et al., 1980) and on the 
physics of physisorbed systems (Birgeneau, Brown, 
Horn, Moncton & Stephens, 1981; Nielsen, Als- 
Nielsen, Bohr & McTague, 1981; Sinha, 1980). The 
X-ray diffraction technique affords great advantages in 
such studies because it yields direct information about 
the spatial correlations of constituent atoms. The high 
momentum resolution (AQ <~ 10 -4 A -l)  required for 
the precise measurement of diffraction profiles is 
generally achieved by using a three-axis spectrometer 
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with perfect crystals as monochromator and analyser. 
Such a configuration reduces the resolution volume in 
the reciprocal space of the sample by a factor of 
between 10 and 100 compared with that obtainable 
with a conventional diffractometer equipped with 
mosaic crystals. However, even when perfect crystals 
are used, the correction for instrumental resolution is 
sometimes crucial to obtaining an adequate correlation 
function from the observed spectra. 

The calculation of resolution properties must ac- 
count correctly for the dynamical diffraction of X-rays 
by the perfect monochromator and analyser crystals. 
Although the theory of dynamical diffraction is well 
known (Zachariasen, 1945; Batterman & Cole, 1964), 
it is usually applied to calculations of the rocking 
curves of perfect crystals (Kikuta & Kohra, 1970; 
Kikuta, 1970) rather than to the convolution of effects 
which contribute to the resolution function of a 
three-axis spectrometer. 

In contrast to the X-ray case, several methods have 
been developed for the calculation of the resolution 
properties of neutron three-axis spectrometers (Sted- 
man, 1968; Cooper & Nathans, 1967). These methods 
are, however, not directly applicable to the perfect- 
crystal X-ray spectrometer because they assume that 
mosaic crystals are used as optical elements and that 
kinematical scattering theory can therefore be applied. 
The latter theory is inadequate for the perfect-crystal 
spectrometer for two fundamental reasons. Firstly, it 
accounts only for the misorientation of diffracting 
atomic planes (mosaic spread) and ignores the effec- 
tive uncertainty in interplanar spacing which is the 
dominant effect in diffraction by perfect crystals. 
Secondly, the distribution of mosaic grains, which is 
reproduced as the rocking curve of a crystal, is 
approximately Gaussian. This is not the case for a 
perfect crystal whose rocking curve has the charac- 
teristic long-tailed, asymmetric form of the Darwin 
profile. 

In the present paper we calculate the resolution 
function for a perfect-crystal three-axis spectrometer 
installed either at a conventional source or at a 
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synchrotron radiation facility. Our method is based on 
that developed by Bjerrum-M611er & Nielsen (1969a,b) 
for the equivalent neutron spectrometer but accounts 
fully for all effects of dynamical diffraction. The 
calculations are compared with measurements made 
with a conventional source in several different 
spectrometer configurations. 

Bragg diffraction by a perfect crystal 

The monochromator  and analyser crystals of the 
spectrometers considered in this paper are assumed to 
be perfect crystals. Bragg diffraction is thus described 
by the dynamical scattering theory as propounded, for 
example, by Zachariasen (1945). Since this theory is 
essential to the present calculation, its salient elements 
are recalled in this section. 

Consider a ray of wavevector k I incident on a crystal 
surface and diffracted as a ray of wavevector k 2. As 
indicated in Fig. 1 the crystal surface is not necessarily 
parallel to the diffracting planes; rather there is an 
angle ~0 between the surface and the planes. It is 
convenient to specify the asymmetry of the surface cut 
by a parameter b, related to ¢p according to 

sin(~0- 0 B ) 
b =  < 0 ,  (1) 

sin(q~ + On) 

where O n is the usual kinematical Bragg angle defined 
by 

2 = 2d sin 0 B. (2) 

Here d is the spacing of the diffracting planes (see Fig. 
1) and 2 is the wavelength of the scattered radiation. 
The introduction of the parameter b allows the 
relationship between the angle of incidence (0,) and the 
angle of diffraction (02) to be written in a simple form, 
viz 

02= O n -  b(O, - On). (3) 

Equation (3) demonstrates, for example, that if a 
narrow monochromatic but divergent beam is incident 

n 

............. At_ " ~  
Crystal 

- -  ~ ~ surface 

d 

Fig. 1. Diffraction of a photon of wavevector k, by an asym- 
metrically cut crystal. The figure defines notation used in the text. 

on a crystal surface for which I bl is small (i.e. OB ~ ~P) a 
wide beam with a smaller divergence is produced after 
diffraction. 

The dynamical theory of Bragg diffraction from a 
crystal is couched in terms of two parameters denoted 
by y and g and defined according to 

(1 - b)l.to2 
g = - (4) 

4rd~'l ~11bl  a/2 

(1 -- b)(n - 1) + by,~2 
y = ( 5 )  

KI ~11bl  w2 

In these equations g0 is the absorption coefficient of the 
crystal and n its index of refraction. Thus g is related to 
the dissipative part of the scattering while y is described 
in terms of the real parts of the atomic scattering 
amplitudes. In (4) and (5) 

X = 4 sin 0n{sin O n - sin 0, }, (6) 

K = 1 if the radiation is polarized perpendicular to the 
scattering plane and K = Icos 20hi if the polarization 
direction is parallel to this plane. The remaining 
quantity in (4), (5), viz ~ ,  is defined in terms of the 
structure factor F n for the scattering planes. Thus 

1 e (  ] 2 2 . ,, 
WH . . . .  FH ~ 7~'H + tW~ (7) 

7r ~mc 2] v a 

with ee/me 2 as the classical electron radius and l) a as 
the volume of the crystal unit cell. The real and 
imaginary parts of the structure factor F H are defined 
as usual by 

F ~ =  ~ ( f f  + A f / ) exp( ixH,  r j) exp(--Wj) (8a) 
J 

and 

F~ = Y, A f / '  exp(ixz, r j) e x p ( -  Wj), (8b) 
J 

where f f ,  A f /  and A f / '  are the mean atomic scattering 
factor and the real and imaginary dispersion correc- 
tions for an atom situated at position rj in the unit cell, 
x H is the reciprocal-lattice vector for the diffraction 
planes and Wj is the Debye-Waller  factor for the atom 
j .  

In terms of the parameters defined above the 
diffracted intensity I z is related to the incident intensity 
11 by 

I--L= I b I { L - [ L 2 - ( 1  + 4K2)2]1/2}, (9) 
11 

where 

~:= ~ / ~  (10) 

and 

L = I{(--1 + y 2 _  g2)2 + 4 ( g y -  x)2}'/21 +y2  + g2. (11) 
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In the case of a non-absorbing crystal x and g are zero 
and (9) reduces to the familiar Darwin (1914) result. 
Since the incident and diffracted beams have different 
widths for ~0 4= 0, the incident and diffracted powers are 
related by 

P2 1 12 
- - -  ( 1 2 )  

Pl Ibl 11 

For the resolution calculation presented here the 
interesting quantity is the beam power per unit area, 
given by 11 or 12. 

The reflection profile described by (9) is funda- 
mentally different from that obtained from the 
kinematical theory of diffraction by a mosaic crystal. 
In the latter case the scattering angle for any ray of 
wavelength 2 is assumed to be 20 n so that 

~)klinematic -F 0 kinematic = 2~) B. (13)  

Thus if 0kt l"ematic increases, 02 kinematic decreases. In the 
dynamical theory of scattering by a symmetrically cut 
crystal (b = -1) ,  01 and 02 are equal [cf (3)] and, for a 
particular 2, a band of values of 02 distributed 
according to the Darwin profile is diffracted. It is as if 
the X-rays were diffracted according to a Bragg law by 
a crystal in which the length of the reciprocal-lattice 
vector x n was uncertain and distributed according to 
the Darwin function. In a mosaic crystal this effect is 
completely dominated by the distribution of 
orientations of XH which represents the mosaic spread. 

General formulation of the  r e s o l u t i o n  p r o b l e m  

In a scattering experiment the measured intensity I 
depends both on the scattering properties of the sample 
and the transmission function of the instrument. Quite 
generally we may write 

I ~  f d k i f d k f P t ( k i ) S ( k i ~ k f ) P f ( k f ) ,  (14) 

where Pi(ki) is the probability that a photon of 
wavevector k i is incident on the sample, P:(k:) the 
probability that a photon of wavevector k: is trans- 
mitted by the analyser system and S(k t -* k:) the 
probability that the sample scatters a photon from ki to 
k:. The finite resolution of the instrument arises because 
the probabilities Pt and P: are non-zero for wave- 
vectors other than the mean initial and final wave- 
vectors, denoted kt and k F. Both Pt and P: involve 
contributions from the Darwin widths of the mono- 
chromator and analyser crystals discussed in the 
previous section. In addition, there is a contribution to 
Pi which depends on the X-ray source characteristics. 

The fluctuation spectrum of the sample S(k~ --, k:) 
does not depend on k~ and k: separately but rather on 

the scattering vector Q and energy transfer hw defined 
by the conservation equations 

Q = k t - -  k:  ( 1 5 a )  

(~ = e(lkil - Ik:L), (15b) 

where c is the velocity of light in vacuo. In terms of 
these variables (14) becomes 

I(Q0,~0) ~ f f f d 3 Q f do)S(Q, oJ) R(Q - Qo, w -  COo), 

(16) 

where Q0 and ~0 are obtained from (15) with the mean 
initial and final wavevectors kl and k F. The function R 
in (16) is the instrumental resolution defined by 
integrating the product PiP: over k i and k: subject to 
the constraint imposed by (15). Since the component of 
Q perpendicular to the scattering plane (defined by k~ 
and kv) is not correlated with the other components of 
Q or with ~o, the integration over this component, 
denoted Qz, can be carried out independently. For the 
moment we consider only the resolution function in the 
remaining three dimensions, namely co and the com- 
ponents of Q in the scattering plane. 

T h e  i n d e p e n d e n t - d i s t r i b u t i o n  m e t h o d  

The difference between k~ and k I (in the scattering 
plane) may be written in component form as (cf  Fig. 2) 

A~' = (k i - kl)/k I (17a) 

A~-=O,--O I, (17b) 

where 0 t is the angle of incidence on the sample and 01 
is the mean value of this quantity. In general Pi is a 
non-separable function of A}' and A/L. However, it may 
be possible to find a transformation to two new 
variables x 1 and x 2, as shown in the second part of Fig. 
2, which allows Pi to be written as the product of a 
function of x I only and another function of x 2 only. 
This procedure was first used for the calculation of the 
resolution properties of a neutron three-axis spectrom- 
eter by Stedman (1968) and was subsequently investi- 
gated in more detail by Bjerrum-M611er & Nielsen 
(1969a,b). The method has the advantage that each 
probability function may be convolved independently 
with the sample fluctuation spectrum S(Q, a0. In the 
case where the probability functions may be approxi- 
mated by Gaussian curves (the neutron spectrometer 
for example) an even greater simplification is afforded. 
The width of a scan through a (planar) phonon 
dispersion surface or through a Bragg point is given, in 
this instance, by a simple quadrature addition of the 
widths of the individual probability functions. Different 
contributions to the instrumental resolution, arising 
from the different x: are therefore decoupled. For a 
neutron three-axis spectrometer, for example, mono- 
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chromator  and analyser  contributions to the scan width 
m a y  be separated and each may  be varied indepen- 
dently to achieve an opt imum experimental configura- 
tion. 

Even in cases where the probability functions P~ and 
PI  are non-Gauss ian  the formalism described above 
may  be useful. Provided the second moment  of  the P ' s  
is defined, the central limit theorem indicates that  
characterist ic widths of  the probability functions can be 
treated in the same way as Gauss ian  widths to give an 
estimate of  a scan width which is useful in the 
optimization of  spectrometer  design. 

Resolution function for a perfect-crystal spectrometer 

The technique outlined above can be applied to a 
perfect-crystal  X-ray  spectrometer  placed either on a 
conventional source or installed at a synchrot ron 
radiation facility. Since the resolution calculation is not 
identical for the two sources we choose to sacrifice 
generality for simplicity of presentation and give in 
detail only the calculation for a conventional source 
such as a rotat ing-anode generator.  

Consider  first a perfect-crystal  monochroma to r  
represented by Fig. 1. Define Pl(81,k) as the prob- 
ability that a photon of wavevector  k is incident at an 
angle 01 and P(Ovk)  as the probability of  observing a 
diffracted photon defined by (Ovk). Then 

P2(O2,k) = P l ( 0 1 , k )  DM0'12), (18) 

where Y12 is obtained from (5) and D M is the 

"kl k td" i  

-~- Ul x 

Xl 

kF 

x~ Q0 

Fig. 2. 'The upper two parts of the figure demonstrate the change of 
variable from A to x as specified in (22). The lower figure is the 
scattering triangle used in this paper and serves to define the 
senses in which the angles u s are positive. 

monoch roma to r  Darwin  function given by (9). 
Al though D M is a function of  both g and y the variat ion 
of  the former quanti ty is negligible for the range of 
wavevectors  reflected and a suitable mean value may 
be chosen. Since the X- ray  source is a characterist ic 
spectral line, P~(Ol,k) is a sharply peaked function of k 
but is essentially independent of 01 . Thus it is 
reasonable to write 

(ko Gk) 2 G~ 
P l ( O l ' k ) =  ( k - k o )  2 + o~k~ (A") 2 + at, - -  2 '  (19) 

where k 0 is the mean wavevector  of  the characterist ic 
X- ray  line of  half-width a k and A' is defined by (17) 
with k and k 0 substituted for k i and k I respectively. 

The m o n o c h r o m a t o r  orientation is adjusted so that  
for the mean angle of  incidence, 010, one obtains y = 0 
for the wavevector  k 0. Thus 

Y,2 = oA~ + tiAz z, (20) 

where A~ = 8l - Ozo and a and ti are the derivatives o f y  
with respect to k and 0 z. St ra ightforward differentiation 
yields 

Ok' 2b sin 2 0 B 
a - -  k - - _ ~ -  (21a) 

Ok Ibll/2KI ~ 1  

0y sin 20 s 
t i =  ~- (21b) 

002 Ibl l/2 KI ~ 1  

To apply the independent distribution method it is 
necessary to t ransform A'  and A ± to new variables x I 
and x 2 according to (cf. Fig. 2) 

x I cos u 1 + x 2 cos u 2 = koA ~ (22a) 

x I sin u 1 + x 2 sin u 2 = koA ~. (22b) 

Since P~ [(19)] depends only on A ~ the choice 

u 1 = re/2; t a n ( g M g s u 2 )  = aM/ti  M (23) 

implies that  P~ is a function of  x 2 only and that  D M is a 
function of  x~ only. A calculation similar to the above 
for the analyser  crystal yields (see Fig. 2 for definitions) 

u 3 = n/2; t an(es  •A /'/4) = - % / b f l n .  (24) 

In (23) and (24) the quantities e M, e s and e A account  for 
the different possible scattering senses at the mono- 
chromator ,  sample and analyser  respectively, e = + 1 
for scattering to the right and e = - 1  for scattering to 
the left. The scattering triangle drawn in Fig. 2 
corresponds to C, M = gA = - 1  and e s = 1. The latter 
figure also defines the senses in which the angles uj are 
to be construed as positive. 

Fig. 3 is an at tempt  to summarize  pictorially the 
results obtained above in a three-dimensional represen- 
tation of  real and reciprocal space. An uncollimated 
beam with a Lorentz wavelength distribution is incident 
on a symmetr ical ly  cut perfect crystal.  In the scattered 
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beam the Lorentzian spread is reproduced along x 2. 
Since, f rom (21), a/fl = tan 0 B, (24) yields u 2 = - 0  B. 
Thus x 2 is parallel to the diffracting planes of the 
crystal.  The Darwin  profile of  the crystal  is reproduced 
in the diffracted beam along x I which is perpendicular  
to the propagat ion direction of  this beam. A heuristic 
a rgument  which explains these results is not difficult to 
find. If  the incident beam is perfectly monochromat ic  
but uncollimated the distribution of wavevectors  in the 
diffracted beam must  be perpendicular  to the latter 
because 01 = 02 are the only variables in the problem. 
Further ,  for any given incident wavevector  the most  
probable diffracted ray corresponds to y = 0 and 
hence, from (6), to 01 ~_ 0 B. Thus, Bragg's  law r n = 
2 k  2 sin 02 may  be used to relate k 2 and 02. Differen- 

J_ II tiation of  this leads immediately to A 2/A 2 = - t a n  0 B 
and thus to the fact that the distribution of incident 
wavevectors  is reproduced along a direction parallel to 
the reflecting planes. 

In summary ,  the probabili ty that  a photon with an 
incident wavevector  

k i = k I + x I + x 2 

and a final wavevector  

k s =  k F + x 3 + X 4 

is t ransmit ted by the spectrometer  is given by 

T = PM(X2/X2) D M ( X l / X I )  PA(X4/X4) DA(X3/X3) , (25 )  

where Xj are scale lengths for the various distributions; 
they are the half-widths for the Lorentzian functions I'M 
and PA and the values o f x  I and x 3 which yield y = 1 for 
the monoch roma to r  and analyser  Darwin functions. 
Thus we have 

Xt = k/flM (26a) 

X z = aek/cos u 2 (26b) 

X3 = -k /ba  ~A (26C) 

X 4 = oo, (26d) 

Perfect Crystal 

~ b=-I 

Fig. 3. An attempt to portray the scattering of an uncollimated 
'monochromatic '  X-ray beam by a perfect crystal. The wave- 
length distribution of the incident beam is reproduced along x 2 
while the Darwin profile of the reflecting crystal appears along x~. 

where I kll = I k /  = k and subscripts M and A 
correspond respectively to the monochroma to r  and 
analyser  crystals.  X 4 is infinite because the detector 
does not distinguish between photons  of  different 
wavelengths.  

Width o f  a scan 

In this section we calculate the intensity distribution 
obtained when a Bragg reflection from a sample crystal  
is scanned. To generate this resolution profile we 
assume that  the Bragg reflection corresponds to a 
Dirac  fi function located at wavevector  z. The intensity 
recorded when the spectrometer  is set to measure  at 
Q = ~ + 6 Q  is 

R (c~Q) = f.f  .[ .[ d4(xl) PM(x2/X2) DM(X,/X1) PA(x4/X4) 

× D A ( x 3 / X 3 ) 6 ( ' t - - Q -  x I - x 2 + x 3 + x4) 

X (~(X 2 COS U 2 --  X 4 COS U4). (27) 

The final 6 function in this expression is included 
because the (Bragg) scattering from the sample is 
assumed to be elastic. 

Since X 4 = oo the integration of  (27) over x 4 may  be 
carried out trivially to remove one of  the 3 functions. 
The remaining 6 function yields two constraints  
involving x 1, x 2 and x 3. Solving for x I and x 3 in terms of  
x 2 (say) allows (27) to be written, after some simple 
manipulation,  as 

R(3Q)  = J d x  2 PM(XE/X2) DM[(B 0 + B2x2)/X1] 

× DAI(A o + A I B  o + {A1B 2 + A 2} X2)/X3], 

(28) 

where 

B 0 = 
6Q,, sin 0 s - 6Qx cos 0 s 

2 sin 0 s cos Os 

- s i n  (0 s + u2) 
B 2 = 

COS 0 s 

t~Q, 
A o = ~ ;  A l = - - 1  

COS 0 s 

A 2 = --[cos u 4 s in(0 s + u2) + cos u z 

× sin(0 s + u4)]/[cos u a cos Os]. 

(29) 

Here 6Q, and 6Q± are the components  of  6Q parallel 
and perpendicular  to Q and 20 s in the mean scattering 
angle at the sample (el Fig. 2). 

Equat ion (28) is a one-dimensional integral which 
may  be evaluated simply by numerical means.  Several 
such calculations will be compared  with experiment 
below. 
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Gaussian approximation 

In many cases an approximate scan width may be 
calculated without recourse to numerical integration. 
Since (28) involves the convolution of three functions 
we may hope that, to a reasonable approximation, each 
function can be replaced by a Gaussian of the 
appropriate second moment. This is a heuristic appli- 
cation of the central limit theorem. Unfortunately, in a 
strict sense, the second moment of the Darwin function 
is undefined. However, we have found that a reason- 
able approximation is to treat X 1 and X 3 as if they were 
standard deviations. Then the width of the scan is given 
by 

X ? X ]  + B I X 2 X  2 + (A 2 + A,B2)2X?X~ 
G 2 . =  

BgX]  + (A o + AIBo):X~ + (BoA2--AoB2)2X~" 

(30) 

The treatment of Xj as the standard deviations of 
various resolution distributions mimics exactly the 
calculation of Bjerrum-Mdller & Nielsen (1969a,b)for 
the three-axis neutron spectrometer. We may therefore 
take over directly their expressions for the widths of 
inelastic scans through phonon dispersion surfaces. It is 
unlikely that these will be of immediate practical use 
however! 

Double-monochromator case 

In many cases, in particular at synchrotron sources, it 
is convenient to use a monochromator composed of 
two parallel crystals. Such a double monochromator 
may be treated by the independent distribution method 
provided both crystals are of similar material and the 
same reflecting planes are used in each crystal. An 
additional restriction is that the first monochromator 
should be symmetrically cut with b = - 1 .  However, 
even when the latter condition is not satisfied R(c~Q) 
can still be written as a one-dimensional integral [cf. 
(27)]. Equations (23) and (26) are retained with a M and 
tim calculated for the second monochromator crystal. 
An additional multiplicative factor appears in (25) and 
(28) to represent the diffraction characteristics of the 
first monochromator crystal. In (25) the additional 
term is DM{[(B 0 + B2x 2) + xEsinu2(1 + bl)]/ 
Xllb I bE1 v2/, where u 2 and X l are defined by (23) and 
(26) in terms of the parameters of the second 
monochromator. The surface cuts of the first and 
second monochromator crystals are represented by b l 
and b E respectively. 

Measurement of the resolution function with a perfect- 
crystal sample 

The resolution profile R(fQ)  calculated above cannot 
be measured directly. However, if a sample whose 

Darwin width is less than those of the monochromator 
and analyser is available reasonably accurate measure- 
ment can be achieved. If the sample is a symmetrically- 
cut perfect crystal the 'ideal' Bragg fi function assumed 
in (27) is spread in the direction of ~ and is distributed 
according to the Darwin function of the sample. Thus 
the measured scattering is given by convoluting 
R(tSQ,, tSQi) calculated above with the sample Darwin 
profile. Specifically 

J ( 3 a , , f O ± ) =  f R ( ~ O , , - x ,  6Ol)Ds(y)dx ,  (31) 

where 
2(n - 1) + x sin Os/k 

y = (32) 
KI gt~l 

and all quantities in (32) refer to the sample crystal. 
Measurements of J(OQ,,,(SQ±) were performed with a 

triple-axis X-ray spectrometer at a 12 kW high- 
brilliance rotating-anode generator at Brookhaven 
National Laboratory. The characteristic radiation 
Mo K0 h (2 -- 0.70926 A, A2FWHM ---- 0"00029 A) or 
Cu K(z I (2 = 1.54051 A, A2 = 0.00058 A), emitted 
from a source of effective height 1.0 mm and of width 
0.5 mm, was monochromated by the 111 reflection of a 
perfect germanium crystal. This crystal, which had a 
surface area of 25 x 25 mm, was located 220 mm from 
the source. In order to investigate a wide variety of 
resolution functions, either Ge(111), Ge(220), Ge(333) 
or Si(111) was mounted on a sample table which was 
450 mm from the monochromator. The analyser was 
identical with the monochromator [Ge(111)] and it was 
set in either the parallel or the antiparallel con- 
figuration 450 mm away from the sample. The detector 
was a scintillation counter with about 1 keV energy 
resolution. The X-ray beam incident upon the sample 
was made as small as 0.2 x 0.2 mm by a slit. No 
collimators were placed between optical elements. All 
perfect crystals used in the present measurements were 
symmetrically cut (b -- -1) .  

The resolution function convoluted with a sample 
response function [see (31)] in the transverse (SQ±) or 
longitudinal (fiQ,) direction was obtained by rocking 
the sample (0 s) or by scanning the sample and analyser 
arm in a ratio of 1:2 (0 s - 20s). Both 0 s and 20 s axes 
had a high angular precision of 0-0005 °, sufficient for 
high-resolution measurements. In the comparisons 
between observations and calculations presented below, 
we define a spectrometer configuration by the notation: 
M(hkl)~-S(hkl)~---A(hkl) ~. Here M, S and A denote 
the type of crystal used for monochromator, sample and 
analyser respectively, (hkl) is the index of the diffract- 
ing planes of the crystal and the superscript, e, denotes 
the scattering sense. As for (23) and (24), e = + 1 for 
scattering to the right and e = - 1  for scattering to the 
left. Accordingly, the symbol Ge( l l l )+ -Ge(333)  - -  
G e ( l l l )  ÷, for example, indicates that both mono- 
chromator and analyser are Ge(111) while the sample 
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is Ge(333). Furthermore, these three elements are set in 
the W configuration. 

C o m p a r i s o n  w i t h  e x p e r i m e n t s  

When three symmetrically cut crystal elements are 
identical and perfectly parallel, the monochromator and 
analyser systems bear a special relationship to one 
another since u z = u 4 = - 0  B[ef. (23) and (24)]. In this 
case, the fact that the monochromator and analyser 
crystals obey dynamical diffraction theory leads to a 

M o K = ~  I G e ( l l l ) + -  G e  (111)'-- G e  (111 ) + 
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Fig. 4. Constant-intensity contours for the spectrometer con- 
figuration G e ( l l l ) + - G e ( l l l ) - - G e ( l l l )  ÷ as a function of 
spectrometer misset defined by 5Q, and 5Ql. Mo K ~  radiation 
is used. (a) Contours calculated from (28) assuming that the 
sample Bragg peak is a Dirac 5 function. (b) Contours calculated 
from (31) with the sample scattering properties correctly 
included. (c) Measured contours to be compared with (b). The 
points represent the positions in q space at which measurements 
were made. In (a) and (b) the star represents the position at 
which the kinematical Bragg condition is satisfied. 

distinctive intrinsic resolution function, when the 
sample scattering is assumed to be a 5 function. Fig. 
4(a) shows one such example calculated for the 
Ge(111)+-Ge(111)--Ge(111) + configuration and 
Mo Kot 1 radiation. In this figure, the abscissa and the 
ordinate represent 5Q, and 5Ql .  Both quantities are 
measured from the maximum of the calculated 
resolution function, which usually does not coincide 
with the kinematical Bragg point marked by a star in 
the figure because X-rays are refracted in a crystal. The 
resolution function is drawn as a set of eqi-probability 
contours with R = 100, 75, 50 and 25%. 

If we use (31) to convolute the intrinsic resolution 
with the Darwin function of a sample, the peculiar 
shape is suppressed as shown in Fig. 4(b). The latter 
figure should be compared with Fig. 4(e) which is the 
resolution function measured by the method described 
in the preceding section. Measurements were made at 
each marked point in Fig. 4(e) around the Q = (1,1,1) 
reciprocal-lattice point and interpolated contours were 
drawn. Since an absolute scattering angle was not 
measured, the observed peak position has been placed 
so as to coincide with the maximum of the calculated 
resolution function. We obtain very good agreement 
between calculation and observation. Fig. 5 shows such 
a comparison of calculation and experiment along the 
5Q, direction with 5Q± = 0. The relative momentum 
resolution in this case is obtained as AQrwnM/Q = 
3.9 x 10 -4  and 5-2 x 10 -5 in the longitudinal and 
transverse direction, respectively. 

The symmetric configuration of monochromator and 
analyser systems with respect to the sample position 
results in a symmetric resolution function with respect 
to the 5Q, axis as seen in Fig. 4. If we break this 
symmetry in the spectrometer set-up by placing the 
analyser in the antiparallel configuration, the resolution 
function tilts from the 5Q, axis as shown in Fig. 6. 
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Fig. 5. Section of Fig. 4(c) along the line 5Q± = 0. The open circles 

represent measured values while tile curve is calculated from (31) 
and normalized to the peak intensity of the experimental curve. 
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The calculation (Fig. 6b) for G e ( l l l ) + - G e ( 1 1 1 ) - -  
Ge(111)- agrees well with the observation (Fig. 6c) in 
both the size of the resolution function and its tilt angle. 

Fig. 7 represents the case in which Ge(333) is used 
as a sample while G e ( l l l )  is used for both mono- 
chromator and analyser. Although the spectrometer 
has a symmetric W configuration, the peculiar shape of 
the intrinsic resolution function shown in Fig. 4(a) is 
hardly seen (Fig. 7a) because the three crystal elements 
are no longer parallel. That is, a special relationship 
among ui's no longer holds in this case. 

A final example is given in Fig. 8, in which the 
Cu K ~  radiation was used for the G e ( l l l )  +- 
Ge(220)--Ge(111) ÷ configuration. The comparison is 
made only along the principal axes fiQ,, and 6Q±. Fig. 
8(a) shows in fact the maximum disagreement between 
calculation and measurement which we have been able 
to find. 
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Fig. 6. Constant-intensity contours for the spectrometer con- 
figuration Ge(l l 1)+-Ge(111)--Ge(111)-. For details see the 
caption of Fig. 4. 

C o n c l u s i o n s  

In this paper we have developed a formalism which 
allows the resolution of a three-axis perfect-crystal 
spectrometer to be calculated for conventional or 
synchrotron radiation X-ray sources. The method is 
straightforward to apply and, as far as we have been 
able to test, gives reliable estimates of resolution 
properties. 

This work was performed while Roger Pynn was a 
summer guest at Brookhaven National Laboratory and 
he would like to thank the staff of the BNL Physics 
Department for their hospitality. The authors would 
like to thank J. D. Axe, S. Kikuta and T. Matsushita 
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Fig. 7. Constant-intensity contours for the spectrometer con- 
figuration Ge(l 11)+-Ge(333)--Ge(l I 1) ÷. See the caption of Fig. 
4 for an explanation of the different parts of the figure. 
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the measurements  of  the resolution functions. Work  at 
Brookhaven was supported by the Division of  Basic 
Energy Sciences, US Depar tment  of Energy, under 
contract  No. DE-AC02-76CH00016 .  

A P P E N D I X  

The calculation presented in the body of  the paper 
referred specifically to a conventional  source. It is 
possible to perform the same calculation for a 
synchrot ron  radiat ion source which is assumed to 
produce white radiat ion over the range of interest. If the 
inherent coll imation of  the synchrot ron  source is 1/ 
(s tandard deviation) we may replace (19) by 

Pl(Ol ,k)  = exp - ~ \ br/]  " (A 1) 

Then we find that  (23) is replaced by 

Ul = 0; tan(eMesU2) = a~//?M (A2) 

Cu Ko~ I Ge(lll)+- Ge(220)--- Ge (11 I) + 

Q =:3.14 

30 
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Fig. 8. Observed (open circles) and calculated (full line) profiles 

obtained with Cu Ka I radiation and a spectrometer con- 
figuration Ge(l 11)+-Ge(220)--Ge(111) ÷. 

and (26a) and (26b) by 

X ,  = k/aM 

X 2 = kbrl/sin u 2. (A3) 

The integral of  (27) is performed in the same way to 
give (28) but with the definitions 

A 0 = - & Q : / l t a n / / 4  COS Os] 
A ~ = 2 t a n 0  s c o t u  4+ 1 

A2 = [cos u4 sin(0s + u2) 

+ cos u 2 s in(0 s + u4)l/ lcos 0~ sin u41 

6Q s i n 0  s -  6Q± cos O s 
B 0 = 

2 sin 2 0 s 

B 2 = --sin(0 s + u2)/sin 0 s (A4) 

For  a double monoch roma to r  (A2) and (A3) above 
refer to the second monoch roma to r  and an extra 
multiplicative term DM{[B o + B 2 x  2 + xzcos  u2(1 + 
bl)/b~ ] ibll l/2/Xiib211/2} appears in (28). In this term b I 
and b 2 describe the surface cuts of the first and second 
monochroma to r  respectively; u 2 and X 1 are defined by 
(A2) and (A 3) in  terms of  the parameters  of the second 
monochromator .  

Recently,  Matsushi ta  & Kaminaga  (1980) have 
developed a method for estimating the performance of  
various optical systems installed at a synchro t ron  
radiat ion source. These authors have calculated the 
shape of  the photon distribution function Pi(ki) [cf. 
(14)] for various cases, including those in which bent 
crystals and elliptic mirrors are used. 
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